The Structure of α -Methylstyrene Tetramer

By M. N. BERGER, J. J. K. BOULTON, B. W. BROOKS, and M. J. EVANS ("Shell" Research Limited, Carrington, Manchester)

The formation of tetrameric dianions by reaction of α -methylstyrene with sodium at 20° has been reported by Szwarc *et al.*¹

The structure of the tetramer (I) was deduced from thermodynamic considerations.² We have prepared a sample of the disodio-tetramer, hydrolysed it with water and examined the hydrolysate by nuclear magnetic resonance spectroscopy.

$$\begin{array}{cccc}
\operatorname{Me} & \operatorname{Me} & \operatorname{Me} \\
 & & & & & \\ & & & & & \\ \operatorname{Na-C-CH_2-CH_2-C-C-CH_2-CH_2-CNa} & (I) \\
 & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$$

$$\begin{array}{ccccccc} Me & Me & Me \\ | & | & | & | \\ HC-CH_2-CH_2-C-C-CH_2-CH_2-CH \\ | & | & | \\ Ph & Ph Ph & Ph \end{array} \tag{II}$$

$$\begin{array}{cccccccc} Me & Me & Me & Me \\ i & i & i & i \\ HC-CH_2-C-CH_2-CH_2-C-CH_2-CH & (III) \\ i & i & i & i \\ Ph & Ph & Ph & Ph \end{array}$$

$$\begin{array}{cccc} Me & Me \\ I & I \\ NaC-CH_2-CH_2-CNa & (IV) \\ I & I \\ Ph & Ph \end{array}$$

$$\begin{array}{cccc} Me & Me \\ i & i \\ HC-CH_2-CH_2-CH \\ HC-CH_2-CH \\ Ph & Ph \end{array}$$
 (V)

The tetramer was prepared by the reaction of sodium sand with α -methylstyrene in tetrahydrofuran at 0° for 1 hr. The hydrolysed tetramer was a waxy material of molecular weight 472 (theoretical 474) as determined on a 'Mechrolab' 301 vapour pressure osmometer. High resolution n.m.r. spectra of dilute solutions of the hydrolysed tetramer in carbon tetrachloride were recorded using a Varian 100 Mc/sec. instrument. Table 1 gives the observed proton resonances, together with our assignments.

TABLE	T	
_		

Proton resonance
τ values
3.1
$7 \cdot 7 - 9 \cdot 2$
7.7
7.9-ca.9
8.5-9.2

Table 2 gives the relevant peak area ratios associated with these resonances.

	TABLE 2	
Proton ratios	Calculated for hydrolysed (I)	Observed in tetramer
Aromatic : aliphatic	1:1.10	1:1.10
Methine : (methyl + methylene)	1:10	1:9.2

The experimentally determined methine : (methyl + methylene) proton ratios accord with the structure (II or III). Szwarc *et al.*¹ report that cleavage of disodio-tetramer with sodium produces a disodiodimer. Cleavage of compound (I) by sodium will produce a material with the structure (IV) which on hydrolysis will yield a dimer (V). Sodium cleavage of compound (VI) would yield a material of structure (VII) which on hydrolysis would yield a dimer (VIII).

We have therefore prepared a disodio-dimer by prolonged reaction (24 hr.) of sodium with α methylstyrene and hydrolysed this product with water. N.m.r. spectra of the dimer showed that the proton ratio methine : (methyl + methylene) is $1:5\cdot2(\tau \text{ values as for tetramer})$. This accords with the ratio expected from structure (V) (*i.e.*, $1:5\cdot0$) but not with the ratio expected from structure (VIII) (*i.e.*, 1:11).

We therefore conclude, in agreement with Szwarc *et al.*,¹ that only structure (I) is possible for the tetramer.

(Received, November 7th, 1966; Com. 865.)

¹C. L. Lee, J. Smid, and M. Szwarc, J. Phys. Chem., 1962, 66, 904.

² A. Vrancken, J. Smid, and M. Szwarc, Trans. Faraday Soc., 1962, 58, 2036.